Isometric Coding of Spiking Haptic Signals by Peripheral Somatosensory Neurons
نویسندگان
چکیده
We study how primary tactile afferents encode relevant contact features to mediate early processing of haptic information. In this paper, we apply metrical information theory to perform temporal decoding of human microneurography data. First, we enrich the theory by deriving a novel spike train metrics inspired by neuronal computation. This spike train metrics can be interpreted biologically and its behaviour is not influenced by spontaneous activity, which decreases the ability of other spike metrics to separate input patterns. Second, we employ our metrical information tools to demonstrate that primary spiking signals allow a putative neural decoder to go beyond stimulus discrimination. They transmit information about geometrical properties of the input space. We show that first-spike latencies are enough to guarantee maximum information transmission of tactile stimuli. However, entire primary spike trains are necessary to encode isometric representations of the stimulus space, a likely basis for generalisation in haptic perception.
منابع مشابه
Optimal context separation of spiking haptic signals by second-order somatosensory neurons
We study an encoding/decoding mechanism accounting for the relative spike timing of the signals propagating from peripheral nerve fibers to second-order somatosensory neurons in the cuneate nucleus (CN). The CN is modeled as a population of spiking neurons receiving as inputs the spatiotemporal responses of real mechanoreceptors obtained via microneurography recordings in humans. The efficiency...
متن کاملFrom Sensors to Spikes: Evolving Receptive Fields to Enhance Sensorimotor Information in a Robot-Arm
In biological systems, instead of actual encoders at different joints, proprioception signals are acquired through distributed receptive fields. In robotics, a single and accurate sensor output per link (encoder) is commonly used to track the position and the velocity. Interfacing bio-inspired control systems with spiking neural networks emulating the cerebellum with conventional robots is not ...
متن کاملSomatosensory Response Properties of Excitatory and Inhibitory Neurons in Rat 1 Motor Cortex
17 18 In sensory cortical networks, peripheral inputs differentially activate excitatory and inhibitory 19 neurons. Inhibitory neurons typically have larger responses and broader receptive field tuning 20 compared to excitatory neurons. These differences are thought to underlie the powerful 21 feed-forward inhibition that occurs in response to sensory input. In the motor cortex, as in the 22 so...
متن کاملComplementary processing of haptic information by slowly and rapidly adapting neurons in the trigeminothalamic pathway. Electrophysiology, mathematical modeling and simulations of vibrissae-related neurons
TONIC (SLOWLY ADAPTING) AND PHASIC (RAPIDLY ADAPTING) PRIMARY AFFERENTS CONVEY COMPLEMENTARY ASPECTS OF HAPTIC INFORMATION TO THE CENTRAL NERVOUS SYSTEM: object location and texture the former, shape the latter. Tonic and phasic neural responses are also recorded in all relay stations of the somatosensory pathway, yet it is unknown their role in both, information processing and information tran...
متن کاملSomatosensory response properties of excitatory and inhibitory neurons in rat motor cortex.
In sensory cortical networks, peripheral inputs differentially activate excitatory and inhibitory neurons. Inhibitory neurons typically have larger responses and broader receptive field tuning compared with excitatory neurons. These differences are thought to underlie the powerful feedforward inhibition that occurs in response to sensory input. In the motor cortex, as in the somatosensory corte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011